Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Orthop Surg ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658320

RESUMEN

OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.

3.
Water Res X ; 22: 100219, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596456

RESUMEN

Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient (Kd) for non-ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with predictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on organic carbon normalized sorption coefficient (KOC) in chemical hazard assessment, as the measured KOC can vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. This research highlights the importance of considering chemical properties and multiple solid constituents in sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure assessments.

4.
Knee Surg Sports Traumatol Arthrosc ; 32(5): 1113-1122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469920

RESUMEN

PURPOSE: This study aimed to assess the relationship between the geometric features of tibial eminence and susceptibility to noncontact anterior cruciate ligament (ACL) injuries. METHODS: Patients with unilateral noncontact knee injuries between 2015 and 2021 were consecutively enroled in this study. Based on knee magnetic resonance imaging (MRI) and arthroscopic visualisation, patients were categorised into the case group (ACL rupture) and control group (ACL intact). Using MRI, the geometric features of tibial eminence were characterised by measuring the sagittal slopes, depth of concavity and coronal slopes of the inclined surfaces of the tibial spines. Univariate and multivariate logistic regressions were conducted to explore independent associations between quantified geometric indices of tibial eminence and the risk of noncontact ACL injuries. RESULTS: This study included 187 cases and 199 controls. A decreased sagittal slope of the medial tibial spine (MTSSS) (combined group: odds ratio [OR]: 0.87 [0.82, 0.92], p < 0.001; females: OR: 0.88 [0.80, 0.98], p = 0.020; males: OR: 0.87 [0.81, 0.93], p < 0.001) and an increased depth of concavity in the lateral tibial spine (LTSD) (combined group: OR: 1.51 [1.24, 1.85], p < 0.001; females: OR: 1.65 [1.12, 2.43], p = 0.012; males: OR: 1.44 [1.11, 1.89], p = 0.007) were independent risk factors for noncontact ACL injuries. Moreover, a steeper coronal slope of the inclined surface of the medial tibial spine was a significant predictor of noncontact ACL injuries for males (MTSCS: OR: 1.04 [1.01, 1.08], p = 0.015) but not for females. CONCLUSION: Geometric features of tibial eminence, particularly a decreased MTSSS and an increased LTSD, were identified as independent risk factors for noncontact ACL injuries. These findings will help clinicians identify individuals at high risk of ACL injury and facilitate the development of targeted prevention strategies. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Imagen por Resonancia Magnética , Tibia , Humanos , Femenino , Masculino , Factores de Riesgo , Tibia/diagnóstico por imagen , Adulto , Adulto Joven , Estudios de Casos y Controles , Artroscopía , Adolescente
5.
Int Immunopharmacol ; 130: 111671, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38367467

RESUMEN

Osteoporosis has become a global social problem with the tendency toward the aging population. The challenge in managing osteoporosis is to develop new anti-osteoporosis drugs that target bone anabolism. The purpose of this study was to uncover the novel mechanism of Vildagliptin on bone metabolism. We revealed that Vildagliptin significantly promoted osteogenic differentiation of precursor osteoblasts and bone marrow mesenchymal stem cells (BMSCs). At the same time, it significantly enhanced the polarization of RAW264.7 macrophages to the M2 type and the secretion of osteogenic factors BMP2 and TGF-ß1. This was confirmed by the increased osteogenic differentiation observed in the osteoblast-RAW264.7 co-culture system. Moreover, Vildagliptin significantly enhanced the transformation of BMSCs into the osteogenic morphology in the osteoblast-BMSC co-culture system. Finally, Vildagliptin also inhibited osteoclastic differentiation of RAW 264.7 cells. The potential mechanism underlying these effects involved targeting the GAS6/AXL/ERK5 pathway. In the in vivo study, Vildagliptin significantly alleviated postmenopausal osteoporosis in ovariectomized mice. These findings represent the first comprehensive revelation of the regulatory effect of Vildagliptin on bone metabolism. Specifically, Vildagliptin demonstrates the ability to promote bone anabolism and inhibit bone resorption by simultaneously targeting osteoblasts, BMSCs, and osteoclasts. The bone-protective effects of Vildagliptin were further confirmed in a postmenopausal osteoporosis model. The clinical significance of this study lies in laying a theoretical foundation for bone protection therapy in type-2 diabetes patients with compromised bone conditions or postmenopausal osteoporosis.


Asunto(s)
Osteoporosis Posmenopáusica , Osteoporosis , Femenino , Humanos , Ratones , Animales , Anciano , Osteogénesis , Vildagliptina/uso terapéutico , Vildagliptina/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Diferenciación Celular , Células Cultivadas
6.
Adv Healthc Mater ; 13(10): e2302833, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185787

RESUMEN

Osteoarthritis (OA) is a highly prevalent and intricate degenerative joint disease affecting an estimated 500 million individuals worldwide. Collagen-based hydrogels have sparked immense interest in cartilage tissue engineering, but substantial challenges persist in developing biocompatible and robust crosslinking strategies, as well as improving their effectiveness against the multifaceted nature of OA. Herein, a novel discovery wherein the simple incorporation of ferrous/ferric ions enables efficient dynamic crosslinking of type II collagen, leading to the development of injectable, self-healing hydrogels with 3D interconnected porous nanostructures, is unveiled. The ferrous/ferric ions crosslinked type II collagen hydrogels demonstrate exceptional physical properties, such as significantly enhanced mechanical strength, minimal swelling ratios, and remarkable resistance to degradation, while also exhibiting extraordinary biocompatibility and bioactivity, effectively promoting cell proliferation, adhesion, and chondrogenic differentiation. Additionally, the hydrogels reveal potent anti-inflammatory effects by upregulating anti-inflammatory cytokines while downregulating pro-inflammatory cytokines. In a rat model of cartilage defects, these hydrogels exhibit impressive efficacy, substantially accelerating cartilage tissue regeneration through enhanced collagen deposition and increased proteoglycan secretion. The innovative discovery of the multifunctional role of ferrous/ferric ions in endowing type II collagen hydrogels with a myriad of beneficial properties presents exciting prospects for developing advanced biomaterials with potential applications in OA.


Asunto(s)
Hidrogeles , Osteoartritis , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Colágeno Tipo II , Colágeno/química , Ingeniería de Tejidos , Antiinflamatorios , Citocinas , Osteoartritis/tratamiento farmacológico , Iones
7.
Cell Signal ; 115: 111038, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195035

RESUMEN

N6-methyladenosine (m6A), the most prevalent internal modification in mRNA, is related to the pathogenesis of osteoporosis (OP). Although methyltransferase Like-3 (METTL3), an m6A transferase, has been shown to mitigate OP progression, the mechanisms of METTL3-mediated m6A modification in osteoblast function remain unclear. Here, fluid shear stress (FSS) induced osteoblast proliferation and differentiation, resulting in elevated levels of METTL3 expression and m6A modification. Through Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and Transcriptomic RNA Sequencing (RNA-seq), SRY (Sex Determining Region Y)-box 4 (SOX4) was screened as a target of METTL3, whose m6A-modified coding sequence (CDS) regions exhibited binding affinity towards METTL3. Further functional experiments demonstrated that knockdown of METTL3 and SOX4 hampered osteogenesis, and METTL3 knockdown compromised SOX4 mRNA stability. Via RNA immunoprecipitation (RIP) assays, we further confirmed the direct interaction between METTL3 and SOX4. YTH N6-Methyladenosine RNA Binding Protein 3 (YTHDF3) was identified as the m6A reader responsible for modulating SOX4 mRNA and protein levels by affecting its degradation. Furthermore, in vivo experiments demonstrated that bone loss in an ovariectomized (OVX) mouse model was reversed through the overexpression of SOX4 mediated by adeno-associated virus serotype 2 (AAV2). In conclusion, our research demonstrates that METTL3-mediated m6A modification of SOX4 plays a crucial role in regulating osteoblast proliferation and differentiation through its recognition by YTHDF3. Our research confirms METTL3-m6A-SOX4-YTHDF3 as an essential axis and potential mechanism in OP.


Asunto(s)
Metiltransferasas , Osteoblastos , Animales , Ratones , Proliferación Celular , Metiltransferasas/metabolismo , Osteoblastos/metabolismo , ARN , ARN Mensajero/metabolismo
8.
Environ Sci Technol ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263624

RESUMEN

A significant number of chemicals registered in national and regional chemical inventories require assessments of their potential "hazard" concerns posed to humans and ecological receptors. This warrants knowledge of their partitioning and reactivity properties, which are often predicted by quantitative structure-property relationships (QSPRs) and other semiempirical relationships. It is imperative to evaluate the applicability domain (AD) of these tools to ensure their suitability for assessment purpose. Here, we investigate the extent to which the ADs of commonly used QSPRs and semiempirical relationships cover seven partitioning and reactivity properties of a chemical "space" comprising 81,000+ organic chemicals registered in regulatory and academic chemical inventories. Our findings show that around or more than half of the chemicals studied are covered by at least one of the commonly used QSPRs. The investigated QSPRs demonstrate adequate AD coverage for organochlorides and organobromines but limited AD coverage for chemicals containing fluorine and phosphorus. These QSPRs exhibit limited AD coverage for atmospheric reactivity, biodegradation, and octanol-air partitioning, particularly for ionizable organic chemicals compared to nonionizable ones, challenging assessments of environmental persistence, bioaccumulation capability, and long-range transport potential. We also find that a predictive tool's AD coverage of chemicals depends on how the AD is defined, for example, by the distance of a predicted chemical from the centroid of the training chemicals or by the presence or absence of structural features.

9.
Environ Sci Process Impacts ; 26(1): 94-104, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050819

RESUMEN

Liquid crystal monomers (LCMs), a group of synthetic chemicals released from liquid crystal devices such as televisions and smartphones, have recently been recognized as emerging contaminants due to their widespread occurrence in the environment and potential negative impacts on human health. Airborne LCMs can undergo atmospheric oxidation reactions to form various transformation products. Despite the certainty of atmospheric transformation chemistry, the knowledge about the hazard properties of transformation products remains largely unknown. Here, we perform an in silico model-based evaluation of the persistence, bioaccumulation potential, mobility, and toxicity of two representative LCMs, namely, 1-ethyl-4-(4-(4-propylcyclohexyl)phenyl)benzene and 4''-ethyl-2'-fluoro-4-propyl-1,1':4',1''-terphenyl, and their transformation products. We found that, among the investigated transformation products, 38% have overall persistence greater than the minimum of 331 days among the persistent organic pollutants regulated by the Stockholm Convention, 62% meet the bioaccumulation threshold of 1000 L kg-1 used by the United States Environmental Protection Agency, 44% are classified "mobile" according to the criterion used by the German Environmental Agency, and 58% have the potential to induce unacceptable toxic effects in aquatic organisms. Furthermore, we identified several transformation products with increased persistence, bioaccumulation potential, and mobility compared to their parent compounds. These findings not only offer insights for prioritizing LCM transformation products for future risk assessment, but also underscore the significance of considering atmospheric transformation in the evaluation of environmental risks posed by emerging contaminants, including LCMs.


Asunto(s)
Cristales Líquidos , Contaminantes Químicos del Agua , Humanos , Estados Unidos , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción
10.
Int J Biol Macromol ; 254(Pt 2): 127824, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924900

RESUMEN

Osteoporosis (OP) is a common systemic bone disorder, and the programmed cell death of osteoblasts is closely linked to the development of osteoporosis. Previous studies have shown that c-fos can cause osteoblast apoptosis. Furthermore, it has been demonstrated that long non-coding RNA (lncRNA) plays a pervasive role in regulating the biology of osteoblasts. Nevertheless, the precise role and mechanism of long non-coding RNA (lncRNA) in relation to c-Fos at the transcriptional level in osteoblast cell death remain uncertain. Compared with normal osteoblasts, serum deprivation resulted in significant upregulation of the transcription factor c-Fos and apoptosis-related Fas proteins in osteoblasts. In addition, the expression of lncRNA GM15416 related to c-Fos was significantly increased. The results showed that overexpression of c-Fos leads to an increase in downstream Fas protein, which subsequently leads to osteoblast apoptosis and hinders osteogenesis. On the contrary, a decrease in lncRNA GM15416 expression leads to a decrease in c-Fos/Fas expression, which hinders osteoblast apoptosis and promotes osteogenesis. Our results suggest that lncRNA GM15416 exerts inhibitory effects on osteoblast apoptosis and acts as a preventive factor against osteoporosis. As a result, GM15416 emerges as an important lncRNA associated with osteoporosis and holds potential as a future therapeutic target.


Asunto(s)
Osteoporosis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Proteínas Proto-Oncogénicas c-fos/genética , Osteoblastos , Osteoporosis/genética , Osteoporosis/metabolismo , Osteogénesis/genética , Apoptosis/genética
11.
Water Res ; 245: 120610, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717328

RESUMEN

Persistent and mobile (PM) chemicals are considered emerging threats to the environment and drinking water because they can be transported over long distances, penetrate natural and artificial barriers, and resist removal by traditional water treatment procedures. Current chemical regulatory frameworks raise concerns over PM chemicals due to their potential to cause high human exposure through drinking water contamination. However, the criteria used to screen and identify these chemicals often rely on hazard properties related to stability and sorption, such as biodegradation half-lives and organic-carbon-normalized sorption coefficients as respective measures of P and M. Here, we conduct a model-based assessment to examine the consistency between hazard-based and exposure-based approaches in assessing PM chemicals, by evaluating whether chemicals identified as highly P and M are consistently associated with high drinking water exposure potential (DWEP). We discover that chemicals with the top DWEPs tend to be PM chemicals, but the reverse is not always true, because DWEPs are also impacted by volatilization for air-distributed chemicals and advective particle-bound transport for particle-bound chemicals. Our findings suggest that the hazard metrics are better suited for de-prioritizing, as opposed to prioritizing, chemicals that are unlikely to result in significant human exposure through drinking water, as unfavorable values of hazard metrics are a necessary but not sufficient condition for a high DWEP. We also find that distinct mechanisms determine the DWEP in different sources of drinking water: Sorption and stability are more influential on the DWEP of chemicals in groundwater and surface water, respectively, whereas both sorption and stability equally impact water undergoing riverbank filtration. Future studies should focus on optimizing the identification of persistent and mobile chemicals to ensure that exposure potential is taken into consideration.

12.
J Dent Sci ; 18(3): 1395-1397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404614
13.
Heliyon ; 9(1): e12799, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699262

RESUMEN

Background: Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA. Methods: Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr. Results: A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8). Conclusions: Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research.

14.
BMC Endocr Disord ; 22(1): 333, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575443

RESUMEN

BACKGROUND: This study aimed to investigate the association between sleep duration and bone mineral density (BMD) and determine whether vitamin D (VD) status influenced the association between sleep duration and BMD. METHODS: National Health and Nutrition Examination Survey 2007-2014 participants aged ≥ 40 years were included in this study. BMD testing was conducted with dual-energy X-ray absorptiometry examinations. Moreover, all individuals were divided into four groups according to self-reported nocturnal sleep duration (7-8 h; 6 h; < 6 h; and > 8 h). In addition, the differences in BMD between the normal sleep duration group and other groups were calculated using multiple linear regression models. RESULTS: Overall, the median age of the overall study population was 55.00 years old, with 46.97% of men distributed. Participants sleeping > 8 h/night had lower BMDs than those sleeping 7-8 h/night. Moreover, the association between unhealthy sleep duration (especially > 8 h/night) and low BMD was more pronounced in older individuals, men, postmenopausal women, and subjects with inadequate VD intakes (< 15.00 µg/day) or deficient/insufficient serum 25-hydroxyvitamin D (< 75.00 nmol/L). CONCLUSIONS: In conclusion, unhealthy sleep duration, especially long sleep duration, was associated with decreased BMD, particularly among individuals aged > 60 years, men, or postmenopausal women. Moreover, VD status might influence the association between sleep duration and BMD, especially in the context of inadequate VD intake or deficient/insufficient serum 25-hydroxyvitamin D levels. However, given the limitations of the present study, further investigation is warranted to confirm this association and to explore potential mechanisms.


Asunto(s)
Densidad Ósea , Duración del Sueño , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Encuestas Nutricionales , Estudios Transversales , Vitamina D , Absorciometría de Fotón , Vitaminas , Calcifediol
15.
Pain Physician ; 25(7): E1137-E1151, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36288601

RESUMEN

BACKGROUND: In neuropathic pain following peripheral nerve injury, microglia are rapidly activated and accumulated in the spinal cord. Physical exercise can alleviate neuropathic pain. However, the exact mechanism underlying this analgesic effect is not fully understood. OBJECTIVES: We aimed to investigate the molecular mechanisms by which exercise alleviates neuropathic pain in relation to brain-derived neurotrophic factor (BDNF), microglia polarization, and autophagy. STUDY DESIGN: A randomized controlled animal study divided into 2 stages. The first stage comprised 4 groups each with 6 mice, and the second stage comprised 6 groups, 3 with 18 mice and 3 with 12 mice. SETTING: Department of Anesthesiology, Lanzhou University Second Hospital, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University. METHODS: Von Frey filaments, Western blotting, immunofluorescence, and transmission electron microscopy analyses were conducted to detect relevant markers. RESULTS: After peripheral nerve injury, exercise training downregulated BDNF expression and reversed microglial activation, as indicated by the increased expression of the M2 marker CD206 and decreased expression of the M1 marker CD86 in the spinal dorsal horn of mice. Autophagy flux was enhanced after exercise training, as suggested by the increased expression of the autophagy markers LC3-II/LC3-I and Beclin1 and decreased expression of the autophagy adaptor protein p62. Furthermore, autophagy inhibition by 3-methyladenine aggravated M1 polarization and hyperalgesia, whereas autophagy induced by rapamycin promoted M2 polarization and reduced hyperalgesia. Intrathecal injection of BDNF significantly upregulated BDNF expression, inhibited autophagy, triggered M1 polarization of spinal microglia, and aggravated hyperalgesia. Furthermore, BDNF regulated autophagy through the AKT/mTOR pathway, thereby participating in exercise training-mediated polarization of microglia after nerve injury. LIMITATIONS: The effect of exercise on autophagy and pain cannot be assessed in an in vitro model. The influence of intrathecal injection of BDNF on the metabolic changes in other neuronal cells and the subsequent effects on pain should be investigated. Further studies on how exercise training modulates microglial autophagy to alleviate neuropathic pain are needed. CONCLUSIONS: Exercise training promoted the recovery of sciatic nerve injury in mice, possibly by regulating microglial polarization through BDNF/AKT/mTOR signaling-mediated autophagy flux. We confirmed the efficacy of exercise training in alleviating neuropathic pain and suggest a new therapeutic target for neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Ratones , Animales , Microglía/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Hiperalgesia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Traumatismos de los Nervios Periféricos/metabolismo , Beclina-1/metabolismo , Beclina-1/farmacología , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/uso terapéutico , Autofagia , Asta Dorsal de la Médula Espinal/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Analgésicos/uso terapéutico
16.
Environ Int ; 170: 107589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36274493

RESUMEN

Parallel Artificial Membrane Permeability Assay (PAMPA) is an in vitro laboratory method for screening the transmembrane permeability of chemicals. Stemming from medicinal chemistry, PAMPA has the potential for use in the cost-effective high-throughput evaluation of chemicals of environmental concern. However, many chemicals of environmental concern differ substantially from pharmaceuticals in hydrophobicity and volatility. Here, we develop an in silico mass balance model to explore the impacts of chemical properties on chemical mass transfer in PAMPA and PAMPA's applicability to hydrophobic or volatile chemicals of environmental concern. The model's performance is evaluated by agreement between predicted and measured permeabilities of 1383 chemicals. The model predicts that the PAMPA measured permeability can be highly uncertain for hydrophobic chemicals because of considerable retention by the artificial membrane and for volatile chemicals because of substantial volatilization to the headspace. Notably, the permeabilities of hydrophobic chemicals are remarkably sensitive to specific experimental conditions, for example, the frequency of stirring and incubation time, challenging the comparison between measurements under different conditions. For hydrophobic chemicals, the PAMPA measured permeability may largely indicate the permeability of the unstirred water layer over the membrane, instead of the "intrinsic" permeability of the membrane, and therefore, may not be of interest for environmental exposure and risk assessments. The model also predicts that the time for mass transfer of highly hydrophobic chemicals to reach the steady state likely exceeds the incubation time, which violates the steady-state assumption used in calculating permeability from measured concentrations. Overall, our theoretical analysis underscores the importance to consider chemical properties when applying the current design of PAMPA to chemicals of environmental concern.


Asunto(s)
Membranas Artificiales , Simulación por Computador
17.
Biochimie ; 201: 100-115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35817133

RESUMEN

Human cervical cancer oncogene (HCCR-1), also named as LETMD1, is an LETM-domain containing outer mitochondrial membrane protein which plays an important role in carcinogenesis. The present study found that the loss of Letmd1 in mice led to severe abnormities, such as brown adipose tissue (BAT) whitening, impaired thermogenesis of both BAT and beige fat, cold intolerance, diet-induced obesity, glucose intolerance and insulin resistance. Mechanically, the deletion of Letmd1 in BAT caused decreased level of both mitochondrial and intracellular Ca2+. The reduced intracellular Ca2+ could suppress the fission of mitochondria and ultimately lead to the disruption of BAT thermogenesis by regulating mitochondrial structures and functions. This study indicates that LETMD1 played a crucial role in BAT thermogenesis and energy homeostasis through regulating mitochondrial structures and functions, which provides a novel insight into therapeutic target exploration from oncogenes for metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Resistencia a la Insulina , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo Energético , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Termogénesis/genética
18.
Pain Res Manag ; 2022: 6571987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281346

RESUMEN

Objective: Neuropathic pain (NP) is a type of intractable chronic pain with complicated etiology. The exact molecular mechanism underlying NP remains unclear. In this study, we searched for molecular biomarkers of NP. Methods: Differentially expressed genes (DEGs) were predicted by analyzing three NP-related microarray datasets in Gene Expression Omnibus with robust rank aggregation. A weighted gene coexpression network analysis was conducted to construct a network of differentially expressed genes, followed by the evaluation of correlations between gene sets and the determination of hub genes. The candidate genes from the key module were identified using a gene set enrichment analysis. Results: In total, 353 upregulated and 383 downregulated genes were obtained, among which five hub genes were determined to be related to pain phenotypes. Reverse transcription-quantitative polymerase chain reaction was performed to verify the expression of these hub genes in the dorsal root ganglia of rats with spared nerve injury, which revealed the decreased expression of EMC4. Hence, EMC4 was defined as a biomarker for NP development. Conclusions: The results of this study form a basis for further research into the mechanism of NP development and are expected to aid in the development of novel therapeutic strategies.


Asunto(s)
Perfilación de la Expresión Génica , Neuralgia , Animales , Biología Computacional/métodos , Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Humanos , Neuralgia/genética , Neuralgia/metabolismo , Ratas
19.
Endocrine ; 76(2): 446-456, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35122626

RESUMEN

PURPOSE: Osteoporosis (OP) is a common disease among adults aged >50 years. At present, the main approach to screen or to diagnosis OP is mainly via bone mineral density (BMD) testing, which might not be optimal for OP screening. This study aimed to develop and validate a convenient and effective prediction model for screening OP based on the demographic information, medical history, and lifestyle habits in the elderly in the United States. METHODS: All data were collected from the National Health and Nutrition Survey database. Participants aged ≥50 years with complete BMD data were included in this study. Twelve candidate predictors were initially selected to develop the prediction model. Final predictors screening and model development were based on multivariate logistic regression. Model discrimination (C statistic) and calibration (Brier scores) were calculated to evaluate the performance of the model. Internal validation was performed using the bootstrap resampling technique, and external validation was based on the validation cohort. RESULTS: The screening tool was developed with individual patient data from 1941 patients and validated with data from 1947 patients after the development of the model. Seven predictors (patient age, sex, race, body mass index, physical activity, sleep duration, and history of fracture) were included in the final prediction model, and the final model had a C statistic of 0.849 [95% confidence interval (CI): 0.820-0.878] and Brier scores of 0.062 [95% CI: 0.054-0.070] on the development cohort. For the validation of the developed model, the results showed a C statistic >0.800 and Brier scores <0.070, irrespective of internal validation or external validation. CONCLUSIONS: A novel screening tool for OP in the elderly, which has excellent discrimination and useful calibration, has been developed and externally validated. Considering its simplicity, generalizability, and accuracy, this tool has the potential to become a practical mean for the elderly to screen OP.


Asunto(s)
Osteoporosis , Adulto , Anciano , Densidad Ósea , Estudios Transversales , Humanos , Tamizaje Masivo , Persona de Mediana Edad , Encuestas Nutricionales , Osteoporosis/diagnóstico , Osteoporosis/epidemiología , Factores de Riesgo
20.
Connect Tissue Res ; 63(2): 156-168, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33588662

RESUMEN

PURPOSE: Fluid shear stress (FSS) plays a critical role in osteoblast proliferation. However, the role of miRNA in osteoblast proliferation induced by FSS and the possible molecular mechanisms remain to be defined. The aim of the present study was to investigate whether miR-140-5p regulates osteoblast proliferation under FSS and its molecular mechanism. MATERIALS AND METHODS: miR-140-5p expression was measured by qRT-PCR. Western blot was used to measure the expressions of P-ERK1/2, ERK1/2, P-ERK5 and ERK5. The levels of VEGFA, PCNA, CDK4 and Cyclin D1 were identified through qRT-PCR and western blot, respectively. Cell proliferation was detected by CCK-8 assay and EdU labeling assay. Dual-luciferase reporter assay was used to validate the target of miR-140-5p. RESULTS: miR-140-5p was significantly down-regulated when MC3T3-E1 cells were exposed to FSS. We then confirmed that up-regulation of miR-140-5p inhibited and down-regulation of miR-140-5p promoted osteoblast proliferation. In addition, FSS promotes osteoblast proliferation via down-regulating miR-140-5p. Luciferase reporter assay demonstrated that VEGFA is a direct target of miR-140-5p. Furthermore, transfection of mimic-140-5p inhibited the up-regulation of VEGFA protein level induced by FSS, suggesting that FSS regulates VEGFA protein expression via miR-140-5p. Further investigations demonstrated that VEGFA could promote osteoblast proliferation. Lastly, we demonstrated that miR-140-5p regulates osteoblast proliferation and ERK5 activation through VEGFA. CONCLUSIONS: Our study demonstrates that FSS-induced the down-regulation of miR-140-5p promotes osteoblast proliferation through activing VEGFA/ERK5 signaling pathway. These findings may provide a novel mechanism of FSS-induced osteoblast proliferation and offer a new avenue to further investigate osteogenesis induced by mechanical loading.


Asunto(s)
MicroARNs , Proliferación Celular/genética , Regulación hacia Abajo , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...